Considering the circuit below to find out the charging current. When the switch is closed, the capacitor will start to charge.
Applying Kirchhoff’s Voltage Law, we get
$E-v_R-v_C= 0………………(a)$$or,E - v_C=v_R=i_C R$$=R {dq}/{dt}=R d/{dt}(Cv_C )$$=RC {d}/{dt}v_C$
$or,{dt}/{RC}={dv_C}/{E - v_C }$
$or,t/RC+k_1=-ln{E - v_C }$ $[Integrating both the sides]$
$or,{-t}/{RC}+k=ln{E - v_C }……….{b}$
Where, k is constant of integration. It can be calculated by putting initial time, t = 0 when capacitor voltage, $v_C = 0V$ then, $k =lnE$
Substituting $k = lnE$ on (b) we get,
${{-t}/{RC}}+lnE=ln(E - v_C)$$or,{-t}/{RC}=ln(E - v_C) - lnE$
$or,{-t}/{RC}=ln({E-v_C}/E)$
$or,e^{-t/{RC}}={E-v_C}/E$
$or,Ee^{-t/{RC}}=E-v_C$
$or,v_C=E-Ee^{-t/RC}$
$or,v_C =E(1-e^{-t/{RC}})$
$∴v_C =E(1-e^{-t/Ï„})$$ [Where,Ï„=RC=Time constant]………..{c}$
After a several period of time constant, the capacitor will be as charged as the applied potential E. It is approximately 5 times of the time constant, Ï„ to be fully charged. After 5Ï„{or >5Ï„} the capacitor voltage will be 20V as per the circuit shown above.
No comments:
Post a Comment